Radiology

RadiologyRadiology encompasses the area of medicine that utilizes X-rays, radioactive tracers and ultrasonic waves to detect, diagnose and guide treatment of numerous diseases and injuries. Developments in technology, computers and science are further advancing the capability to image inner body structures, tissues and organs.

The dynamic images that radiology provides are essential to both physicians and patients, thanks to their realistic depiction of the anatomy, functions and abnormalities within the body. Radiologists can interpret imaging studies, act as consultants to other specialists and perform interventional procedures. There are several categories of radiological procedures.

Mammography

Mammography is a type of imaging that uses a low-powered X-ray to provide pictures of breast tissue. In general, normal functioning tissue and abnormal cancerous tissue differ only slightly in their attenuation, or X-ray stopping power. However, cancerous tissues can be separated from normal tissue if the breast contains an abundance of fat. Cancerous cells, and some benign tumors, contain very small areas of calcium deposits that also may be detected. Radiologists tend to look for these visually, but may use computer-assisted software to detect these deposits (see computer aided detection). Mammography is usually used in breast cancer screenings and is able to detect 85-90 percent of breast cancers in women over the age of 50.

Digital Mammography (Inland Valley Medical Center)

Hours of Operation: 8:00 a.m. – 4:00 p.m.

  • Over 70 years of experience between the technologists
  • ACR FDA/State Accrediation
  • Hologic Selenia Digital Mammography – since 2008
  • Diagnostic Mammography
  • Ultra Sound Needle Wire Localization
  • Galactogram

Ultrasound

Ultrasound, or sonography, uses high frequency sound waves to produce images of the body. A device that acts like a microphone and speaker is placed in contact with the body using ultrasound gel to transmit the sound. As the sound waves pass through the body, echoes are produced, and bounce back to the transducer. These echoes can help doctors determine the location of a structure or abnormality, as well as information about its make up. Ultrasound is a painless way to examine internal organs such as the heart, liver, blood vessels, breast, kidney or gall bladder, and is most commonly known for its ability to examine a fetus in the mother’s womb. Ultrasound scanning currently is considered to be a safe, noninvasive, accurate and cost-effective investigation of the fetus. It has progressively become a crucial obstetric tool and plays an important role in the care of many pregnant women.

Magnetic Resonance Imaging (MRI)

MRI uses radio waves and a strong magnetic field to create clear and detailed pictures of internal organs and tissues. Since MRI does not use X-rays, no radiation exposure is involved. In MRI, radio waves are directed at the body’s protons within the magnetic field. The protons become “excited”, and as they “relax” and emit radio signals, they are then processed by a computer to create an image. MRI is very useful in diagnosing diseases in all parts of the body including cancer, vascular and heart disease, liver and bile duct abnormalities, stroke, other neurological diseases and joint and musculoskeletal disorders. An MRI exam usually will take anywhere from 30-50 minutes and consists of several imaging series. Most studies will require a small intravenous injection of an MRI contrast agent that usually contains the metal Gadolinium. MRI contrast does not contain iodine, an element that is used in other contrast agents for X-rays or CT scans. Thousands of MRI’s are conducted each year, and technology has improved this system so vastly that a doctor can take images of abnormalities in a matter of seconds.

Not everyone can be scanned using this process. Very large people, those who wear pacemakers,those who may have metal fragments in their eyes from prior injury, those with recent metal implants or some surgical clips and those who are claustrophobic often cannot be safely scanned.

Magnetic Resonance Angiography (MRA)

MRA is another noninvasive angiography procedure that uses MRI to visualize vessels as two-dimensional and three-dimensional images that can be viewed on a computer monitor. The indications are similar to that of CTA. This noninvasive procedure requires no X-rays, invasive catheter placement or iodinated contrast material, but does involve an intravenous injection of Gadolinium. MRA is a painless, shorter exam than a catheter angiography. The results of MRA may be used to determine whether surgery or treatment such as angioplasty is needed, and to plan that treatment.
 

Computed Tomography Angiography (CTA)

CTA uses a CT scanner to noninvasively produce images of vessels. Iodine is a contrast material that may be injected into a vein using a small intravenous needle, creating no need for invasive catheter placement. This type of exam has been used to screen numerous patients for arterial diseases such as aortic dissection, carotid stenosis, aneurysms and vascular disease of the kidney. Most patients can receive this exam without being admitted into the hospital. This method of detection displays the anatomical detail of blood vessels more precisely than an ultrasound, and while comparable to MRI, is faster and can be performed on patients with pacemakers and other metal implants. A prior serious allergic reaction to iodine contrast is a contradication to CTA.
 

Helical (Spiral) CT Scan

CT scans use special X-ray systems that produce images of the body from different angles, and then use computer processing to show a cross-section of the various tissues and organs pictured. With very little radiation exposure to patients, CT scans have proven very helpful in diagnosing cancer, cardiovascular disease, infectious disease, trauma and musculoskeletal disorders.

Helical (Spiral) CT is a vast improvement over conventional CT scans. The patient lies on an exam table that passes through a doughnut-shaped scanner, while an X-ray tube rotates around the table. This movement results in a spiral shaped continuous data set without any gaps. With the helical CT, there is less likelihood to miss small tumors or abnormalities, and spiral CT is about 8 to 10 times faster than a traditional CT. This procedure is especially beneficial to the elderly, very young patients and acutely injured patients who are sensitive to longer exam times.

The multi-slice CT allows doctors to simultaneously capture multiple images of a patient’s anatomy from the helical data. The GE Light Speed is an example of this technology, and is up to six times faster than traditional single slice helical CT scanners, which helps reduce the scan time from a few minutes or more to 20-30 seconds. This is especially useful in trauma situations where the faster scan can allow emergency physicians to begin treating the patient more quickly. Also, it is very helpful for patients who cannot hold their breath.

In addition, the CT scanner technology has the potential to significantly reduce diagnostic time and increase image clarity for the diagnosis of multiple chest, abdominal and pelvic conditions, including detection and staging of cancer. Life-threatening blood clots and cardiovascular conditions also can be detected faster and more reliably using a CTA performed with the LightSpeed scanner.

Computer Aided Detection (CAD)

Computer Aided Detection, a supplementary procedure in the field of mammography, is used in conjunction with conventional mammography to substantially improve diagnostic accuracy. The radiologist first reviews the whole mammogram as before, and then the CAD software analyzes the digitized mammogram. Any irregularities noted by the computer are then re-evaluated by the radiologist.

The application of CAD helps to decrease the risk of observational error in the interpretation of mammograms, while also increasing the chances of detecting subtle malignancies at the earliest possible stage.

This Draft Has Sidebar Blocks
Sidebar Block 1
Sidebar Block 2
Sidebar Block 3
Sidebar Block 4
Southwest Healthcare System is owned and operated by a subsidiary of Universal Health Services, Inc.(UHS), a King of Prussia, PA-based company, that is one of the largest healthcare management companies in the nation.    

Inland Valley Medical Center
36485 Inland Valley Drive
Wildomar, CA 92595
951-677-1111

Rancho Springs Medical Center
25500 Medical Center Drive
Murrieta, CA 92562
951-696-6000

PRIVACY POLICY / HIPAA STATEMENT / PHYSICIAN DISCLAIMER
© 2014 Southwest Healthcare System. All rights reserved.

Note:The information on this website is provided as general health guidelines and may not be applicable to your particular health condition. Your individual health status and any required medical treatments can only be properly addressed by a professional healthcare provider of your choice. Remember: There is no adequate substitution for a personal consultation with your physician. Neither Southwest Healthcare System, or any of their affiliates, nor any contributors shall have any liability for the content or any errors or omissions in the information provided by this website.    

The information, content and artwork provided by this Web site is intended for non-commercial use by the reader. The reader is permitted to make one copy of the information displayed for his/her own non-commercial use. The making of additional copies is prohibited.